Constraints of tolerance: why are desiccation-tolerant organisms so small or rare?
نویسنده
چکیده
Drying to equilibrium with the air kills nearly all animals and flowering plants, including livestock and crops. This makes drought a key ecological problem for terrestrial life and a major cause of human famine. However, the ability to tolerate complete desiccation is widespread in organisms that are either <5 mm long or found mainly where desiccation-sensitive organisms are scarce. This suggests that there is a trade-off between desiccation tolerance and growth. Recent molecular and biochemical research shows that organisms tolerate desiccation through a set of mechanisms, including sugars that replace water and form glasses, proteins that stabilize macromolecules and membranes, and anti-oxidants that counter damage by reactive oxygen species. These protections are often induced by drying, and some of the genes involved may be homologous in microbes, plants and animals. Understanding how mechanisms of desiccation tolerance may constrain growth might show how to undo the constraint in some economically important macroorganisms and elucidate the much-studied but elusive relationship between tolerance of stress and productivity.
منابع مشابه
The Limits and Frontiers of Desiccation-Tolerant Life1
SYNOPSIS. Drying to equilibrium with the air is lethal to most species of animals and plants, making drought (i.e., low external water potential) a central problem for terrestrial life and a major cause of agronomic failure and human famine. Surprisingly, a wide taxonomic variety of animals, microbes, and plants do tolerate complete desiccation, defined as water content below 0.1 g H2O g21 dry ...
متن کاملThe limits and frontiers of desiccation-tolerant life.
Drying to equilibrium with the air is lethal to most species of animals and plants, making drought (i.e., low external water potential) a central problem for terrestrial life and a major cause of agronomic failure and human famine. Surprisingly, a wide taxonomic variety of animals, microbes, and plants do tolerate complete desiccation, defined as water content below 0.1 g H(2)O g(-1) dry mass. ...
متن کاملTrehalose Is a Versatile and Long-Lived Chaperone for Desiccation Tolerance
BACKGROUND Diverse organisms across taxa are desiccation tolerant, capable of surviving extreme water loss. Remarkably, desiccation tolerant organisms can survive years without water. However, the molecular mechanisms underlying this rare trait are poorly understood. RESULTS Here, using Saccharomyces cerevisiae, we show that intracellular trehalose is essential for survival to long-term desic...
متن کاملIncreasing intracellular trehalose is sufficient to confer desiccation tolerance to Saccharomyces cerevisiae.
Diverse organisms capable of surviving desiccation, termed anhydrobiotes, include species from bacteria, yeast, plants, and invertebrates. However, most organisms are sensitive to desiccation, likely due to an assortment of different stresses such as protein misfolding and aggregation, hyperosmotic stress, membrane fracturing, and changes in cell volume and shape leading to an overcrowded cytop...
متن کاملGenetic Analysis of Desiccation Tolerance in Saccharomyces cerevisiae
Desiccation tolerance, the ability to survive nearly total dehydration, is a rare strategy for survival and reproduction observed in all taxa. However, the mechanism and regulation of this phenomenon are poorly understood. Correlations between desiccation tolerance and potential effectors have been reported in many species, but their physiological significance has not been established in vivo. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 209 Pt 9 شماره
صفحات -
تاریخ انتشار 2006